A Cause-Effect Cascade for Managing Diffuse Pollution

- I. Leaching from below the soil profile
- II. Transport and attenuation through underlying aquifers
- III. Recommending water quality limits for sensitive receiving waters
- IV. Mitigation and management options for maintaining water quality within limits

Waimea water management zones

I. Leaching from below the soil profile

Modelled mean annual N losses, 1973-2013 climate PRELIM

6

2013 Land Cover

II. The Attenuation Question

Median nitrate in 4 aquifers 1986–2005, mg/L, n=111 bores

Groundwater attenuation of nitrate: 2 assessment methods

			Babbi Island
Aquifer	1 Spatial average attenuation	2 Temporal average attenuation	Bore 802
AGUA	63%	74 – 92%	
HU	1%	-	
UCA	0%	0%	AXARA
LCA	39%	0%	
Uncc aquif	onfined an ers flow n	d Hope et	XIBore 114

Upper Confined Aquifer flow net

6

Lower Confined Aquifer flow net

6

III. Setting Water Quality Limits

Some Waimea water uses and values potentially most affected by water quality changes from intensified land use

- Aquatic ecology in the Waimea River, spring-fed streams and Waimea Inlet
- Brown trout and native fish habitat and abundance
- **Recreational uses** of the Waimea River and Waimea Inlet, e.g. swimming, kayaking and picnicking
- **Potable waters** from individual wells and reticulated supplies.
- **Cultural and spiritual values**, including mahinga kai (food gathering)

Surface waters as receiving waters

3

Walmaa Inlai

Potential water quality limits for Waimea catchment and Waimea Inlet

			Objectives		
Water bodies	Safe for swimming	Safe drinking water	Limit risk of nitrate toxicity	Control freshwater periphyton growth	Limit macroalgal blooms in the Waimea Inlet
Waimea River	95 th percentile values of <i>E.</i> <i>coli</i> <260 /100mL	N/A	Annual average NO ₃ - N <2.4 mg/L and annual 95 th percentile <3.5 mg/L	Dissolved reactive phosphorus concentrations <0.026 mg/L	Total N load to Waimea Inlet from all
Spring-fed streams	N/A	N/A	Annual average NO ₃ - N <3.8 mg/L and annual 95 th percentile <5.6 mg/L	Dissolved reactive phosphorus concentrations <0.026 mg/L	tonnes/year, equivalent to <50 mg/m²/day (or 182 kg/ha/yr over the inlet area)
Groundwater	N/A	No <i>E. coli</i> and NO ₃ -N <11.3 mg/L			

IV. Can Good Management Practices deliver within recommended limits?

?

Questions for FLAG

Guidance needed on which crops are most similar to modelled ones in terms of N (and other) fertilizer use

2013 Land Cover

What changes to growing practices for major land uses across the catchment (pipfruit, grapes, livestock/dairy, vege growing) you think would reduce N losses the most?

- for possible scenario modelling

Any other changes you think may need consideration to achieve future N limits?

Your initial thoughts – how important is achieving each of these green types of water quality limit?

			Objectives		
Water bodies	Safe for swimming	Safe drinking water	Limit risk of nitrate toxicity	Control freshwater periphyton growth	Limit macroalgal blooms in the Waimea Inlet
Waimea River	95 th percentile values of <i>E.</i> <i>coli</i> <260 /100mL	N/A	Annual average NO ₃ -N <2.4 mg/L and annual 95 th percentile <3.5 mg/L	Dissolved reactive phosphorus concentrations <0.026 mg/L	Total N load to Waimea Inlet from all sources <610 tonnes/year, equivalent to <50 mg/m²/day (or 182 kg/ha/yr over the inlet area)
Spring-fed streams	N/A	N/A	Annual average NO ₃ -N <3.8 mg/L and annual 95 th percentile <5.6 mg/L	Dissolved reactive phosphorus concentrations <0.026 mg/L	
Groundwater	N/A	No <i>E. coli</i> and NO ₃ -N <11.3 mg/L			