

20th April 2015

The Planning Toolbox

- Environmental management
 - Context
 - Plan Framework
- The range of approaches
- It's not just about the Council

Environmental Management

- The legislative context
 - Resource Management Act
 - National Policy Statement; Freshwater Management
 - Conservation Orders
 - Tasman Resource Management Plan

The Tasman Resource Management Nan

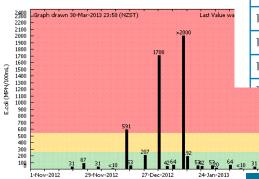
- Purpose of the Plan
 - To assist the Council to carry out its functions in order to achieve the purpose of the RMAct.
 - The purpose of the Act is to promote the <u>sustainable</u> management of natural and physical resources
 - The Plan describes the <u>objectives</u>, <u>policies and</u> <u>methods</u> of implementation to achieve sustainable and integrated management of various natural and physical resources in Tasman District.

National Policy Statement; Freshwater Management NPSFM

- The Plan gives effect to the NPSFM
 - The NPS provides a water management framework:
 - Identify the values and uses that water must be managed to provide for
 - Describe the extent to which the range of values are to be provided for
 - Adopt measures to ensure management objectives are met

Meeting the Objectives - Plan Methods

- Investigations and Monitoring
 - These methods generate information about resource uses and their environmental effects:
 - Information to enable better decisions
 - Ensures understanding about connections and effects of activities
- Council's role to collect and share information and apply what is learnt;
 - Website data, information
 - Field support
 - Advice
 - Resources



Buller River at Murchison Campgro Swimming Water Quality

This site was monitored as part of an investigation sampling round water quality results can be viewed below:

- Water quality sampling results for 2012/2013 season
- Site Information
- Map of Site
- Disclaimer

E.Coli Results for the 2012/2013 Season

About Buller River at Murchison Campgrou

Table of flow readings for past 7 days

Flow [Water Level] [m3/sec]
11.15
11.15
11.19
11.19
11.19
11.19
11.23

River Flow History

Catchment size: 713 km2

Period of analysis: 08 October 1970 to 30 April 2014

Comment: Early record is reliable for flood flows only so drought analysis start

EXPLORE DATA

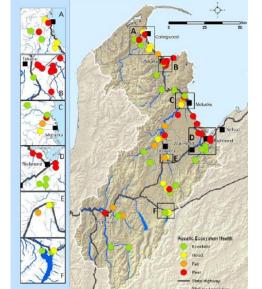
LAWA connects you with Ne environment through shari

Search for a site near you

Or explore topics

	Flood Flows	Drought Flow						
Return Period	(m3/s)	1 day average	7 day average					
Annual	1080.3	3.078	3.310					
5 Year	1315.2	2.423	2.580					
10 Year	1506.2	2.200	2.331					
20 Year	1689.5	2.036	2.148					
50 Year	1926.7	1.870	1.963					
100 Year								
Extreme Recorded	2076.4 10/07/1983	1.687 26/03/2001	1.774 23/03/2001					
Ruller at Longford – River Flow								

Buller at Longford - River Flow


- is page contains the following information:
- Graph of Flow for last 7 days at Buller at Longford
 Graph of Flow for last 30 days at Buller at Longford
 Site Information and historical flow statistics
- Table of flow readings for past 7 days
- Disclaimer

Data from Buller at Longford is normally updated every 60 minute

Advocacy and Education

- These methods involve provision of information and promotion of preferred practices for resource management.
 - Resources website, brochures, advice
 - Includes advocacy through awards and recognition of particular practices (Green Ribbon Award)
 - Support of community groups, local initiatives
 - Information about wetland values and functions

GOOD PRACTICE GUIDE TO WETLANDS

Tasman Resource Management Plan Guide No.2

Good Practice Guide to Managing Wetlands in Tasman District

Controlling Aquatic and Wetland Invaders

Clean Stre AWARDS

The

Motue **Sherry River** - A Success Story

Improve eater quality to that the Shery River meets recreational use guidelines by farm EMPh

🧶 A Guide to Managing Waterways on Tasman - Marlborough Farms

Works and Services

- The provision or requirement for works and services can be used to enhance the development of communities or to avoid, remedy or mitigate adverse effects.
 - Rubbish collection
 - Infrastructure including water supply and waste water
 - Water augmentation

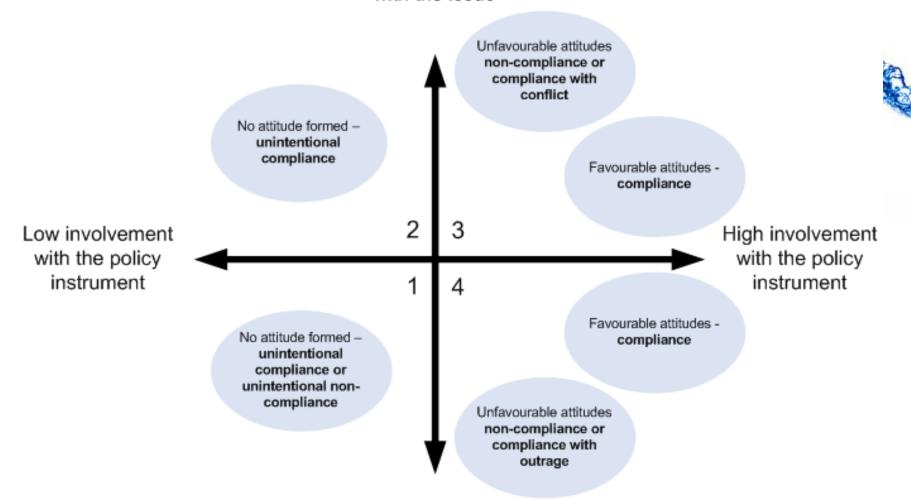
Financial Measures

- Can work as incentives and disincentives
 - Financial measures or charges or other compensatory contributions are a method to encourage or discourage certain resource use practices
 - Subsidies riparian fencing funds.
 - (Also acknowledges public benefits of works on private land)
 - Fines non-compliance with rules
 - Financial contributions paying towards infrastructure or service
 - Rebates QEII covenants

Regulation

- Regulating resource use activities for their adverse effects through the use of:
 - Rules, including limits and consent requirements, performance standards
 - provide certainty for investment and the community
 - may reduce consent application costs
 - enforcement action if non-compliant
- Self-regulatory actions by resource users themselves
 - Less compliance cost as reward for good selfregulation

Taking No Action


This method may be used where results may be achieved without Council intervention

The Question;

 Are there methods to which people respond better than regulation and punishment?

High involvement with the issue

Low involvement with the issue

I, Response Framework (adapted from Kaine et al 2010)

The right mixture

- Rewards temporary effect but do little in the way of changing people's attitudes
- Motivation is much less about external prodding or stimulation, and much more about what's inside of you and inside of your work.
- In other words, the most motivated people are those who feel a connection with their work or the outcomes being sought

Understanding What Action is Required

- Objectives based on values:
 - Allocation Water quantity
 - minimum flows, quantity limits
 - Allocation Water quality
 - quality limits water quality state
 - » Catchment loads,
 - » property scale management

Pathways, Cause and Effect

- The pathways by which pollutants reach surface, groundwater and marine waters are often complex and not fully understood.
 - Connections between water bodies in complex geology
 - Lag effects
- The impacts of diffuse source pollution depend on
 - the quantities of pollutants released;
 - how easily the pollutants are transported into water systems; and
 - how sensitive the water environment is to pollution

Water Quality Mitigation Methods

- Mostly based on natural processes to remove targeted contaminants
 - (i) land-based management or treatment of contaminants at source,
 - (ii) interception of contaminants along hydrological pathways, and
 - (iii) bottom-of-catchment methods that treat contaminants within receiving waters

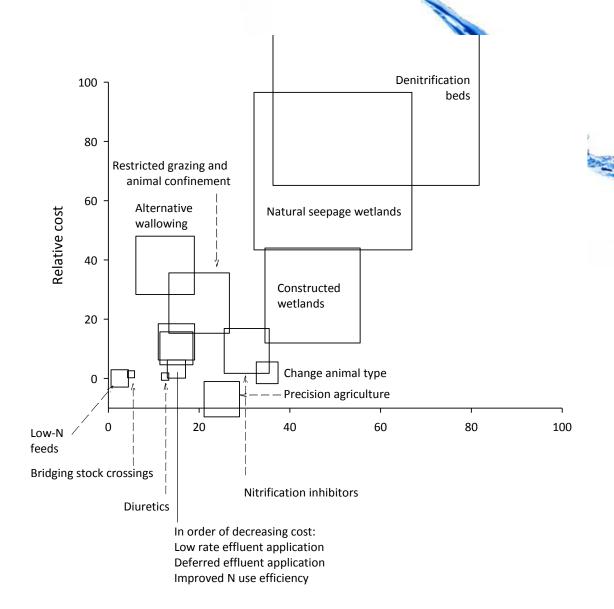
Selling the idea

 A desire for an alternative outcome than the status quo would provide

- Today's norms judged by the future
 - Stewardship is about the future as much as it is about the present

Best Practice

- Do we know what it is?
- How do you know when you get there?
- Canterbury MGM project
- Mitigation assessment


Table 5. Information applicable to the application of take-scale technologies (strategies) to mitigate the effects of water quality contaminants to takes.¶

TargetX	Strategy¤	Description-of-functionX	Lead- research-	Effectiveness¤	Relative-cost# Re	easons-for-variability# Facto	ors-limiting-uptakeX	Co-benefits-¥	References# B
Multiplex	Inflow-diversionX	Diverts-nutrient-rich-lake- inflows-downstream.X	agencyX University-of- Waiksto, NIWAX	Ohav-C diverte in-Lake (2003-) Sandy-I catchm (Hawke eviden Consid Stream c\$120	sessment of Strat	egies·to·Mitigate·t f·Contaminants·fro and·to·Fresh·Wate RE500/2013/0	ract-from-landscape- ¶ he- om- ers¶	_#	Scholes and McIntosh (2010); Jacoby et al. (1999); Robertson-et al. (2000); X
Multiplex	typalimetic siphonings	Removes-poor-quality-(e.g anoxic)-water-at-the-bottom- of-stratified-lakes#	_#	Notusi 50-lake where 1	¶ Section Break (Next Page) New Zealand's sc	June 20	¶	_#	McIntosh (2004); □ Nüxabera (2007)¤
Multiplex	Dredging¤	Removes-nutrients-and- sediments-from-a-lake-bed.X	University-of- Walkatox	Has-no but-rec Lake,-U	Lake-Okaro-(30-ha). of Recent-application-to re	moval-across-lake; extent- disturbance-and- suspension-as-well-as- sruption-of-benthic-biota.¶	spoil, disturbance-of- na-(invertebrates), lease-of-contaminants- ents.8	In-some-cases-spoil-may-be- useful-as-a-soil-conditioner.X	Klapper (2003) % Paithfull-et-al. (2006); Miller (2006) x

Figure 3.

Diagram of the relative cost and effectiveness of strategies to mitigate **nitrogen** losses to water at the farm-scale

Effectiveness (%)

Y = number of Audited Self Management (ASM) relies on regulation farmers/growers Council managed Industry / government developed "ASM" systems Incentive examples: Reduced s. 36 charges Increased consent term (take) Higher reliability Reduced inspection Lower consent charges Permissions / authorisations Industry defined GMP Industry defined BMP Regulation consented X = increased adoption of practice Consented with better conditions Permitted / incentivised Specified recommended actions, Negotiated conditions on a Specified non compliance

audited and verified independently

points, audited and verified

independently

mix of s.9 or s.15 type

controls

Regulatory Approaches

- Catchment Load
 - Lake Taupo Nitrogen trading within overall limit
- Catchment loads to Property limits Overseer
 - LUC based Nitrate leaching rate for each LUC class
 - Leaching rates by land use type
- Modelled and managed at property scale
 - Performance standards for activities
 - Stock access, setback distances,
 - Water quality at property boundary specified
 - Overseer as tool
 - Requirements for "intensive" land use records etc
 - "Best Practice" MGM, Farm environment plans

Not just about the Council....

- Industry initiatives understanding best practice
 - Clean Streams dairy industry and councils
 - Industry supply agreements
 - Specific performance required
 - Industry monitoring
 - » Movement towards council auditing role?

Irrigation NZ

- Efficient application and management of irrigation systems
- Good design and management practice understood and specified
- Complexity in decision making
 - Legacy issues, other considerations

- Iwi, landowner and community projects
 - Aorere, Sherry catchment projects
 - Enviroschools
 - Cobb Power Ltd Mitigation Fund

A good programme...

 A good programme has to be based on the values of the community, because that's what drives the behaviours of the people within it.

• The purpose of any management programme is to drive the right behaviour.

