Land use and water quality in Te Waikoropupū springs

> Dr Don J Mead Golden Bay

- Land-use changes in Takaka catchment
- How water quality has changed
- Why water quality has changed
- Comments on options

Land-use changes

- Pre 1842
 - Small Maori cultivations
 - Tall podocarp hardwood forest in valley
 - Beech forests on hill
- Forests largely cleared by early 1900s
 - 1912 Takaka County

- 60% of stock units were sheep

- 2012 Tasman District
 - Dairy now 60% of stock units
 - Plus intensification of farming on lowland areas

Other impacts

- Clearing marble mountain (1900–1940)
 - 10 to 30 cm measured soil loss
 - Erosion on steep hills
 - Sheep in upper Cobb/Waingaro to 1951
 - Mining (ceased 1963)
 - Cobb Dam finished 1955
 - -Earth dam
 - Flooded 2.1 km²

Dairy

- Dairy factory started 1894
- Early 1920s
 - milking machines
 - superphosphate fertilizer
- 1929 factory expanded
- Mid 1960s further expansion
 - Milk tankers
- 1969 factory expanded again
- 2005 current factory 560 m³ of milk per day

Lowland recharge-area changes

Year	Cows in Golden Bay	Cows in recharge area	Typical herd size
Mid 1910s	4 300	400	10
Mid 1960s	9 000	2 000	60
Mid 1970s	10 700	2 500	100
Mid 2000s	21 500	5 500	250 2.3 cows/ha
2014	30 000	6 700	360
			2.8 cows/ha

Leaching losses

- 2.8 cows/ha on gravel soils Takaka valley
 - often 80 kg N /ha per year
 - high rainfall, well-drained soils, N additions
 - Sheep and cattle farms
 - 15 to 20 kg N/ha per year
 - Indigenous forestry*
 - 0.5 kg N/ha per year
 - Estimated leaching losses for unconfined aquifer: in the order of 200 250 t/year

*Published figure for podocarp/beech forest

Consented water use in recharge area (000s m³/wk)

Year	Pre 70	1982	1987	1992	1997	2002	2007	2012
Water supply ¹	3	6	9	9	7	7	10	10
Irrigated volume	0	0	32 ²	32	28	30	163	287
Total water consented	3	6	41	41	35	38	173	297
Irrigated area	0	0	91	91	181	196	655	1021

- 1. Domestic, stock and dairy washing
- 2. From 1983

Actual metered irrigation use

Irrigation usually mid-Nov to mid-April
– 5 yr median use was 26% of allocated
Highest in Feb – 40 to 80+% of approved

In 2013-14 over 12 weeks – 2 million m³ applied = 200 mm rainfall on the 1000 ha

What has happened?

1990 to 2014 Main spring

Median 0.38 g/m³

Rate of change 1.6% per year

Lowess is locally weighted scatterplot smoothing

Indicates less increase in recent years

- Earliest water analyses 1970-71
 Median NO₃-N was 0.31g/m³
- Early 1990s nitrate was about half current level and *lower* than the 1970-71 results
 - Reasons
 - Improved farming practice
 - Recovery from other disturbances
 - (Errors in analytical techniques?)

Fish Creek springs

- Very few analyses
- Flow-weighted nitrate concentration is about 23% higher than in the Main spring
 - Due to 75% of water in Fish Creek Spring coming from the shallow aquifer
 - About 40% of nitrate moves in the shallow aquifer

Phosphate

Less clear

- Some high Total P concentrations in Main spring (limited data)
- Most soluble P concentrations are low
- However
 - Soluble P is higher in springs than the rivers
 - Total P can very high at Kotinga during floods

Takaka river

- At the Harwood's nitrate has been decreasing by 13% per year since 1999
- 2. At Kotinga nitrate has remained stable
- **3**. NO₃-N currently (base flow)
 - 0.005 g/m³ at Harwood
 - 0.18 g/m³ at Kotinga

Nitrate-N discharges

- Springs complex
 - Pre farming about 15 t/year
 - 1970 about 100 t/year
 - 1990 about 50 t/year
 - Current about 200 t/year
 - Takaka river at Kotinga
 - About 150 t/year (base flow)
- Other losses from lower Takaka valley

Water Temperature

- Water temperature influences
 - Weed growth and biodiversity

Main spring

- 1970-71 constant 11.7 °C
- 1975-76 11.5 °C

River temperatures

- large seasonal variation
- but no significant trends with time

Water temperatures Main spring

Pre 2004 median 11.6 °C stable – little variation Post 2004 median 11.8 °C stable - greater variation Winter temperatures 1994-2014 stable at 11.6 °C

Irrigated in dry, warm weather and high soil temperatures. Illustrates sensitivity of system

Spring periphyton

- 4 studies between 1970 2012
 - Not fully analysed
 - Different methodologies
- Reduced weed-free area
- Several exotic weeds
 - Latest invasion detected 2005 and now covers 14% of spring.
 - Watercress is N responsive
- Periodically weeded by DOC
- Perhaps P limited (see Stark)
- Macro-invertebrates no change

Comments on AMA management

- Control by adaptive management
 - Set goals
 - Select indicators
 - Ideally these should be locally based
 - Nitrate
 - Phosphate (the 'critical' P concentration is difficult for Springs periphyton)
 - Water clarity
 - Periphyton

Interpreting nitrate

- 1. ANZECC environmental guidelines
 - 0.44 g/m³ lowland rivers not karst systems
- 2. Nitrate levels in rivers above farming
 - About 0.01 g/m³
- 3. Recent river natural estimates (2013)
 - $0.06 \pm 0.03 \text{ g/m}^3$ for this climate, geology, topography
- 4. 2012 guidelines for natural groundwater
 - up to 0.25 g/m³
- 5. National toxicity guidelines

Lowess trend for NO_3 -N concentrations (1970 – 2014)

Dotted red and green lines illustrate possible future trends

What is the community's expectations for Te Waikoropupū springs and the AMA?

Thanks

