

Modelling land use impacts using SPASMO, Waimea Plains

Steve Green, Plant & Food Research, Palmerston North

Andrew Fenemor, Landcare Research, Nelson

Landcare Research Manaaki Whenua

A Soil-Plant-Atmosphere System Model of Water and Nutrient Fate

Soil processes & Nutrient dynamics

Mineralization of Soil OM

- \rightarrow 3 pools litter, humus, manure
- \rightarrow 1st order rate constants (K's) and

efficiency factors (fe, fh) and soil C:N

 \rightarrow modified by temperature & moisture

 \leftarrow parameterized using lab incubations \leftarrow sensitive to fraction of C₁ and the K₁

Measuring & modelling pasture growth

- Pasture cuts every 3-4 weeks to assess growth and N uptake
- Pasture height before and after grazing to assess feed intake

Net Pasture growth at Tikokino

- Pasture growth depends on sunlight & temperature and the availability of soil water and soil nitrogen (consider all other factors to be non-limiting)
- Production ~15 T DM/ha

Feed requirements and production

Animal sub-model

- \rightarrow rotational grazing
- \rightarrow match feed intake to production
- \rightarrow bring in supplements as required
- \rightarrow dung and urine returns
- ightarrow dairy effluent to part of the farm

Crop growth and nutrient uptake \rightarrow grapevines

Tress water use by the heat-pulse method

- Sap-velocity profile recorded at 2-6 depths below the cambium
- integrate to get volumetric sap flow [5-10 L/h in mature apple trees]

Vine water use [mm/d] is scaled to potential ET

Vine water use measured with sap flow sensors (markers) \rightarrow scaled to potential ET using a 'crop factor' approach

Soil water content by time domain reflectometry

Automatic TDR – every 6 hours Soil's volumetric water content [L/L] Array of probes – from 0-200 cm Measurements in the control treatment

Water stored in the root zone

- S = stored water [mm]
- T = average water content [L]
- Z = root zone depth [mm]
- S = T times Z

Using growers data to verify the calculation procedures

Sensors installed to measure drainage

- Sensors were installed in the Motukawa vineyard at Giffords Road
- Our presentation provides an update of trial results where we are measuring nitrate loss under vineyard soils on the Wairau Plains.

Soil water balance for the vineyard

- A simple water balance model to estimate changes in soil water content & drainage losses from the vineyard
- This data will be useful in estimating recharge rates and testing models of the land surface & groundwater interactions

Cumulative losses of Nitrate-N

- The NO₃-N leaching is approximately 3-4 kg/ha/yr.
- The NH₄-N leaching rate is quite small (< 0.5 kg/ha/yr)

Drainage meters for water and nutrient fluxes

Modelling nitrate leaching under Dairy

- Drainage samples from 45 suction lysimeters
- 50 cm depth on three separate paddocks)
- Large coefficient of variation in the data

Comparing the annual leaching losses

Nitrate Losses from Waimea Plains Farm Systems: Initial Results for Discussion by Waimea FLAG

SPASMO model of four farm types

- Grapes a typical vineyard
- Pipfruit a typical apple orchard
- Dairy a typical dairy farm
- Outdoor vegetable production

On Four Soil Types

- Ranzau very stony silt loam
- Waimea & Motupiko silt loams
- Wakatu & Dovedale silt loams
- Richmond silt loam

And One virtual climate (VCSN 20302)

Soil Groups and Hydraulic Parameters (1m of soil)

Soil#	Soil Group	Saturated soil water content (mm)	Field Capacity FC (mm)	Stress Point (mm)	Wilting Point WP (mm)	Total Avail. Water TAW (mm)
1	Dovedale silt loam (& Wakatu)	338	208	136	84	124
2	Ranzau stony silt loam	408	149	78	39	110
3	Richmond silt loam	430	344	239	146	198
5	Waimea silt Ioam & sandy Ioam; (& Motupiko)	399	287	188 Landcare	112 e Research	175
L			Manaak	RANGAHAU AHUMĀRA KAI		

Model outputs \rightarrow a soil water balance

Water balance [mm/year] - Pasture							
Site number	1	2	3	4	5		
ET crop	979	977	981	980	980		
Rainfall	1056	1056	1056	1056	1056		
Irrigation	557	523	507	536	517		
Drainage	375	470	316	473	459		

Example of a **pasture** water balance

** model includes intercepted rainfall losses and runoff (not shown)

Irrigation demand with scenario modelling of water restriction rules

Water balance [mm/year] - apples							
Site number	1	2	3	4	5		
ET crop	535	546	575	583	568		
ET alley	259	222	260	246	251		
Rainfall	1056	1056	1056	1056	1056		
Irrigation	116	104	103	91	103		
Drainage	234	317	173	247	273		

Example of a **Orchard** water balance

** model includes intercepted rainfall losses and runoff (not shown)

Landcare Research Manaaki Whenua

Growers' Irrigation Practices Surveyed

▲ 2008 ▲ 2009 ○ 2010 ● 2011

Long term average – tree crops

Landcare Research Manaaki Whenua

Long term average – field crops

Data – Taupo (dry-land dairy (2.4 cows/ha)

Landcare Research Manaaki Whenua

Modelled average annual nitrate losses by crop and soil type, kgN/ha/yr

LAND USE/ FARM SYSTEM	Ranzau soil	Waimea & Motupiko soils	Wakatu & Dovedale soils	Richmond & Heslington soils	Proxy soil for S&Beef * includes all other soils	Proxy soil for forest & scrub
Dairy pasture	64.7	58.8	62.3	22.8		
Apples (also applies to Berries, hops, kiwifruit, avocados)	18.3	6.6	9.3	3.1		
Grapes (also applies to olives, small nuts)	18.3	9.8	13.6	4.3		
Outdoor vegetables (also applies to nurseries, glasshouse)	56.4	35.3	34.7	18.5		
Other pasture/lifestyle block/non-agricultural (assumes extensive sheep & beef land use)					~10.7	
Forest, scrub						

Modelled Nitrate-Nitrogen Losses, Waimea lowland catchment

Landcare Research Manaaki Whenua

40 years modelled nitrate leaching from apple orchard, Ranzau & Waimea soils

Between Year Variability in N Leached - Apples

40 years modelled nitrate leaching from outdoor veges, Ranzau & Waimea soils

40 years modelled nitrate leaching from 3 outdoor vege rotations, Ranzau soils

Between Year Variability in N Leached - 3 vege rotations on Ranzau soils

Potentially suitable for market garden expansion

Groundwater Flow Net showing flow directions for leachate in unconfined aquifer

Modelled Nitrate-Nitrogen Losses, Waimea lowland catchment

Landcare Research Manaaki Whenua