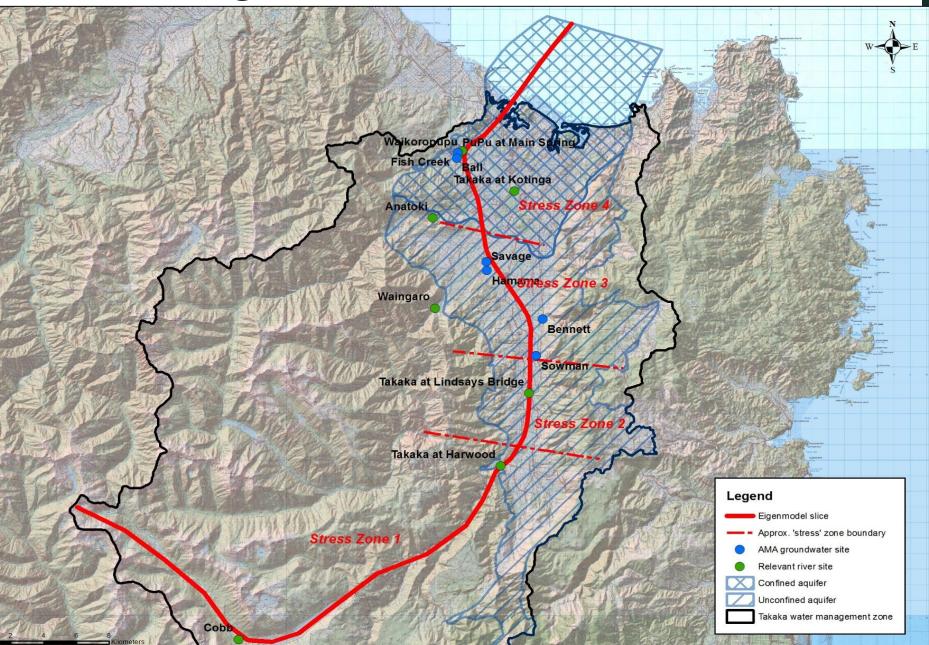
Te Waikoropupu Springs Water Quality Modelling

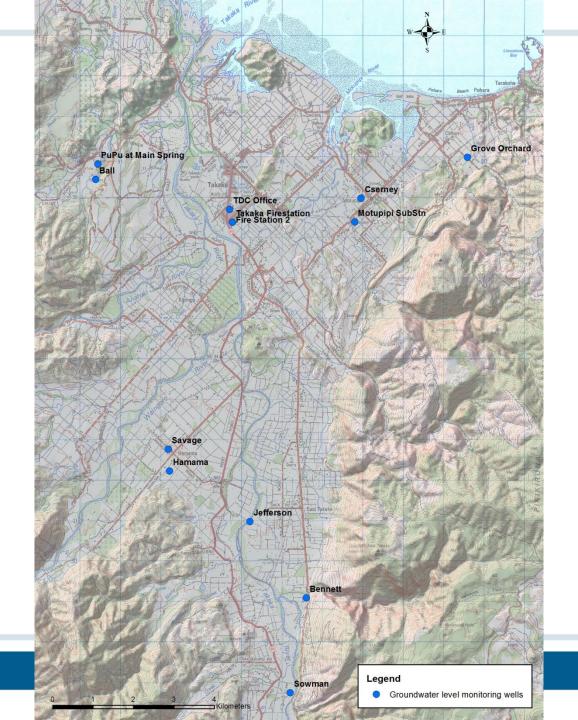
Modelling Recap

- Thomas & Harvey (2013)
- Eigen models set up using:
 - Geology
 - Climate (rainfall and PET)
 - Soils
 - Land use
 - Consents and irrigated areas
 - Monitoring data (groundwater levels; river flows; quality)


Modelling Approach

- FLOW: Eigen-modelling for river flow and groundwater levels by 'stress zone'
- WATER QUALITY: Fully mixed mass balance without attenuation for nitrate concentrations

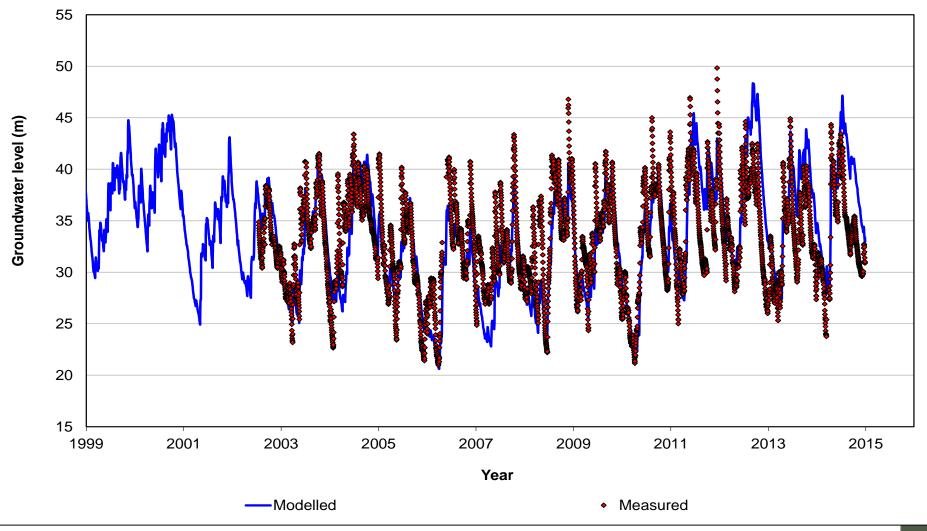
Calibration

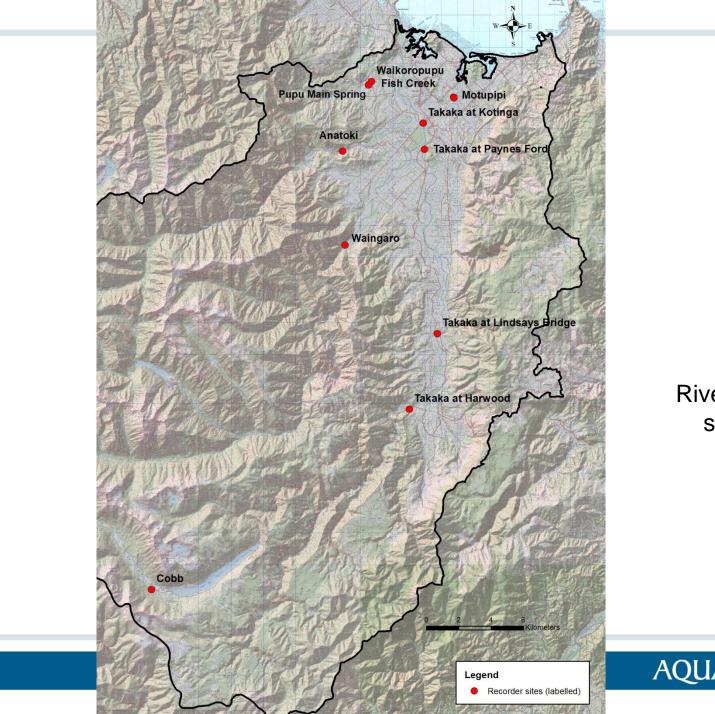

- Measured groundwater levels
- Measured river flows
- Existing nitrate-nitrogen concentrations

AMA Eigen-Model Domain

Modelling Assumptions & Uncertainties

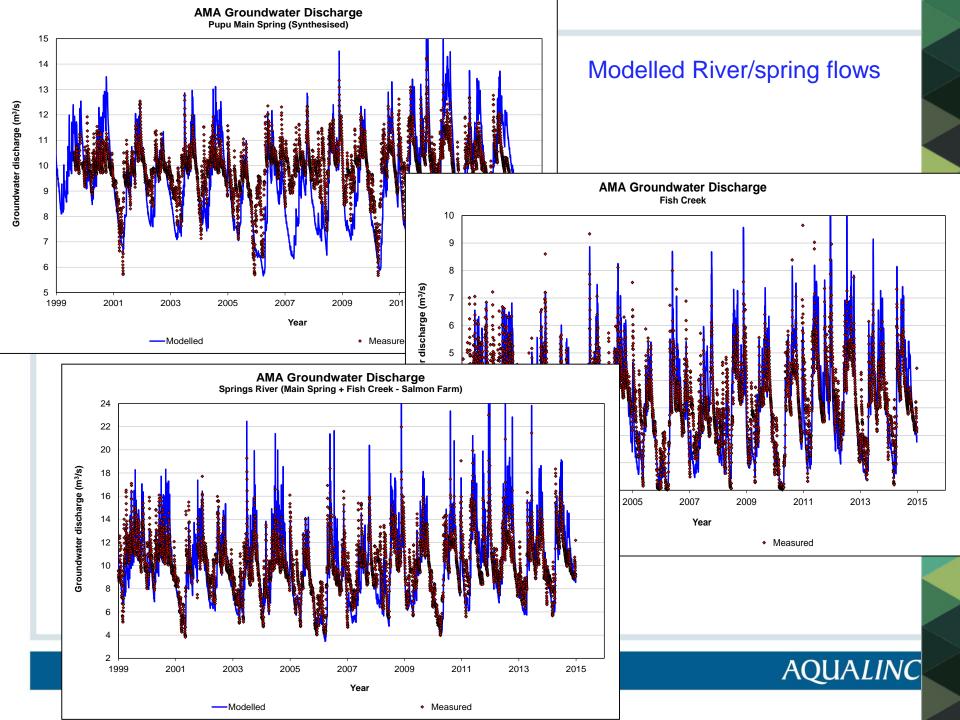
- Water in = water out (water balance)
- Nitrate in = nitrate out (no attenuation)
- Nitrate fully mixed with flow reaching Te Waikoropupu
- Marble aquifer 'plumbing' largely as expressed in Stewart & Thomas (2008)
- Dairy farm N-leaching rates from OVERSEER[™] ver
 6.1.2 (probably ±30%); rates for other land uses from literature
- We consider there is no better approach with the time and resources available



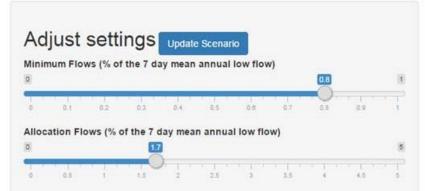

Groundwater level calibration sites

AQUALINC

Groundwater level calibrations


AMA Groundwater Levels Savage

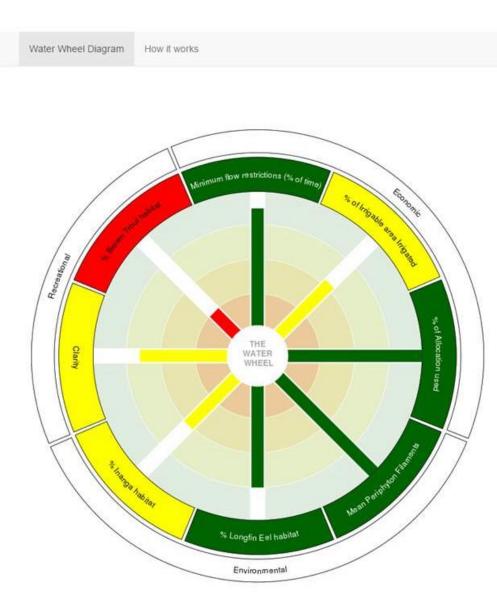
River flow sites


Previous Scenarios

- Status quo (calibration)
- Scenario 1: No consumptive use
- Scenario 2: Double irrigation
- Scenario 3: Surface water irrigation taken instead from g/water
- Scenario 4: No Cobb Dam upper Takaka river flows are 'natural' flows
- Scenario 5: No Waingaro River recharge (sensitivity test)
- Scenario 6: Natural State
- Scenario 7: Likely irrigation 1 (+494ha)
- Scenario 8: Likely irrigation 2 (+674ha)
- Scenario 9: Likely irrigation 3 (+794ha)

AQUALINC

Fish Creek Limits Simulator


Indicators

Economic	Recreational	Environmen
Irrigation Take (m3/s)	Clarity	MCI
 Minimum flow restrictions (% of time) 	% Brown Trout habitat	% Reduction width
Management flow restrictions (% of time)		 Mean Periph Filaments
Irrigation Bulk Reliability		Max Periphy Filament
🕑 % of Irrigable area		回 Mean Peript
Irrigated		Max Periphy
% of Allocation used		🗹 % Longfin E

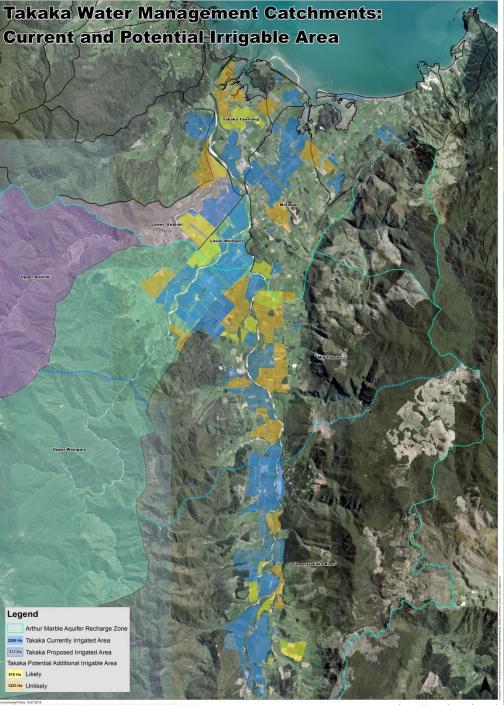
ø	MCI
	% Reduction in river width
•	Mean Periphyton Filaments
0	Max Periphyton Filament
	Mean Periphyton Mats
	Max Periphyton Mat
•	% Longfin Eel habitat
	% Shortfin Eel habitat
	% Brown Trout habitat
0	% Bluegill Bully habitat
1	% Inanga habita

- 📄 % Torrent habitat
- 回 % Kokopu habitat

This model was prepared as part of the Wheel of Water research project funded by the Ministry of Business, Innovation and Employment.

Revisiting the Nitrate Modelling

- Refined irrigable areas
- OVERSEER updated N-losses for dairy, with Mirka (Fonterra)


New scenarios:

Current irrigation 993ha

Proposed Irrigation (waiting list) Current + 469ha

Plausible Irrigation (for dairy with potential water nearby) Current + 583ha

Unlikely Irrigation (for dairy but water may be difficult to access) Current + 1011ha

Disclaimer: The Information on this map is prepared for indicative use only and is not intended for definitive legal, location or formal reference purposes. Cadataria data sourced from Land Information New Zasaland data. Crown copyright reserved. Avrial photography copyright Terrative International Limited. Cadataria data devent from Revent Resonances Cadadataria (Cadataria and Tabala Water Management). Cathomet data

Soil water holding capacity

Unmapped = hill country (low WHC; 40 mm assumed)

N Loss Rates by Soil Water Retention aggregated from OVERSEER™ 6.1.2 (courtesy Mirka Langford, Fonterra)

Soil group (Plant	Dryland	Irrigated
Available Water, mm)	kgN/ha/yr	kgN/ha/yr
PAW 40-100	55	109
PAW 100-160	81	115
PAW >160	71	92

Irrigation Scenarios and N Loads

SUMMARY	N loading	Ha irrigated	Ha dryland
N LOADS	(tonnes/yr)	dairy	dairy
Current Dairy	260	993	2063
Current+Proposed	275	1462	1594
Current +Proposed+Plausible	298	2045	1011
Current+Proposed+Plausible+Unlikely	336	3056	0
766 l/sec allocation limit from FLAG	278	1544	1512
Double current irrigation (Scenario 2)	294	1986	1070

Sub Catchment Nitrate Budgets

Land cover	Area (ha)	Average NO ₃ -N (kg/ha/year)	Loading reference	Mass of NO ₃ -N (tonnes/year)
Forestry	67,400	0.65	Aqualinc (2014) Table 9, and further calibrated	44
Intensive pasture/dairying	2,275 ⁽¹⁾	106	Mirka Langford (Fonterra), estimated average for Takaka valley	241
Dryland/low intensity pasture	5,465 ⁽²⁾	68	Mirka Langford (Fonterra), estimated average for Takaka valley	372
Native grassland / hill scrubland	16,860	2.5	Hanson (2010) Tables 1-4, and further calibrated	42
	Total			699

⁽¹⁾ Existing irrigated area.
 ⁽²⁾ Estimated based on remaining unirrigated area on valley floor.

Sub Catchment Nitrate Budgets

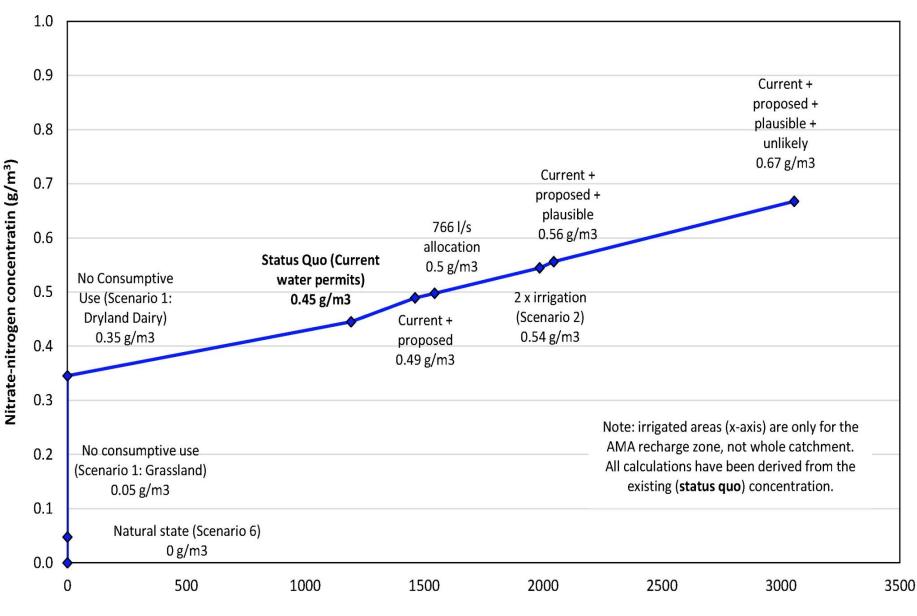
Flow component	Nitrate-nitrogen (tonnes/year)			
Aquifer	AMA	TLA	TUGA	Combined
Input				
Land surface (1)	152	190	167	509
Output				
Surface water (groundwater component)	115 ⁽²⁾	12 ⁽³⁾	96 ⁽⁴⁾	223
Groundwater (off shore) ⁽⁵⁾	37	178	71	286
Total out	152	190	167	509

⁽¹⁾ Calculated for surface areas overlaying individual aquifer systems.

⁽²⁾ Calculated as the product of the groundwater component to Pupu Main spring and Fish Creek (7.4 m³/s + 0.8 m³/s, based on Figure 21 of Thomas & Harvey, 2013), and nitrate-nitrogen concentration in Waikoropupu main spring (0.445 g/m).

⁽³⁾ Calculated as the product of Motupipi River flow (0.47 m³/s) and Motupipi Spring concentration (2.5 g/m³).

⁽⁴⁾ Calculated as the sum of individual products of the TUGA groundwater flow component and concentration, estimated at various surface water sites.


⁽⁵⁾ Individually calculated for each aquifer system as the product of calculated off-shore flow and representative groundwater concentration.

Discussion Process

- Critical values needing management √
- Nitrate as management attribute √
- Threshold(s)/limits for management to achieve that value v
- Which is the most acceptable scenario for achieving that water quality limit?
- Is it consistent with FLAG's draft AMA allocation limit?
- If not, review both to reach a consensus.

AMA Groundwater Concentrations

Irrigated area in AMA recharge zone (ha)