

Takaka FLAG Takaka Township Allocation Summary

15 April 2016

Takaka Township Zone

Key: Surface water take Groundwater take Take from storage Community supply Irrigation take Industrial take Domestic/stock use

Water Allocation Recommendations

- 80:10 regime recommended by Roger and Joseph
- Applies to surface water takes from Lower Takaka River and groundwater in the Takaka Gravel Aquifer
- Allocation limit = 541* l/s (10% of MALF at gravel crusher)
- Existing takes are all from groundwater = 135l/s, so 406l/s available
- 50% rationing and cease take triggers for new surface water takes only
- No cease take for groundwater unless these are also in the coastal margin and then subject to a salt intrusion trigger
- Alternative suggestion of 90:05 regime

*revised by TDC hydrologist - MALF slightly lower than previously advised

Regime comparison

- Minimum flows (average days per year below MF)
 - 80:10 (MF@4331) =7.2 days/yr
 - 90:05 (MF@4873) = 12 days/yr
 - Difference of 5 days per year
- Security of supply (% of time above cease take trigger):
 - 80:10 (CT@ 4602) =97.3%
 - **90:05** (CT@ 5008) = 96.3%
 - Difference of 1%

Takaka Tov	wnship Zone							Suggested Option		Suggested Option		
Water Dem	and					Available Water		Ţ		Ţ		
Existing Takes		Waiting List		Future Irr	igation	Regime Option (MF%-AL%)	90%-10%	90%-5%	80%-20%	80%-10%	(status quo*)	
Surface	0	Surface	0			Minimum Flow Percentage of MALF	90%	90%	80%	80%	na	
Ground	135	Ground	0			Minimum Flow I/s (MF)	4873	4873	4331	4331	na	
Total	135	Total	0	Total	0	Allocation Percentage of MALF	10%	5%	20%	10%	na	
						Total allocation I/s (AL)	541	271	1083	541	none	
		Existing & Waiting	135			% of demand met by allocation limit						
			M	ax Demand	135	% of Existing met	100.0%	100.0%	100.0%	100.0%	100.0%	
						% of Waiting List met	na	na	na	na	na	
Flow Statistics and Default Allocations						% of Future Irrigation met	na	na	na	na	na	
Statistic		Methodology	% of 5yrLF	l/s	Location	Water available beyound maximum demand (AL - ET +WL+FI)	406	136	948	406	na	
7 day MALF				5414	Gravel Crusher							
1 day MALF						Low Flow Management						
1 in 5 Year Low Flow (7 day)				4248	Gravel Crusher	Regime option	90%-10%	90%-5%	80%-20%	80%-10%	status quo	
1 in 10 Year Low Flow (7 day)				3863	Gravel Crusher	Risk to instream values (Roger Young's advice)	Low	Low	low-mod	low-mod	na	
Allocation default Lower Limit (AL)		10% of 5yr Low Flow	10%	425	Gravel Crusher	Rationing Trigger (50% cut, MF+AL)	5414	5143	5414	4873	na	
Allocation default Upper Limit (AL)		33% of 5yr Low Flow	33%	1402	Gravel Crusher	Cease Take Trigger I/s (MF + 50%AL)	5143	5008	4873	4602	na	
						Average days below Minimum Flow (MF) per yr (1999-2015 data)	12	12	7.2	7.2	na	
Opportunity fo	or C type takes to stor	age (over last hydrologic	cal year)			Security of Supply (based on data from 1975-2015 - Nov-April ir	iclusive)					
Median flow (I/s)				?		Regime option	90%-10%	90%-5%	80%-20%	80%-10%	status quo	
% of time flow above median flow				?		% of time flows are above rationing trigger	95.3%	96.0%	95.3%	96.6%	na	
Volume of wate	er above median flow	for year (million m3)		?		% of time flows are above cease trigger	96.0%	96.3%	96.6%	97.3%	na	
Ci	of Factorial Va		2			Communication to last 10 years data (from 1000 /2000) and ((2015)					
Significance	e of Ecological Va	lues	-			Comparison to last 10 years data (from 1999/2000 to 2014)	2015)	000/ 50/	0.004 0.004	0.000		
						Regime option	90%-10%	90%-5%	80%-20%	80%-10%	status quo	
# as assessed by	υr. κoger Young (Fresh	water Ecologist, Cawthron	- Coastai and l	resnwater	Group Manager)	Average days of cease take per year	14.3	13.2	12	9.4	na	
						Number of years (and no. of events) with cease takes > 3 days	10 (20)	9(17)	9(18)	7 (15)	na	
						Number of years (and no. of events) with cease takes > 5 days	8 (13)	7 (12)	/(11)	7 (10)	na	
						nd = no data available						
						na = not applicable						

Allocation below sustainable limits

TRMP direction on allocation considerations

• Allocation method:

- Define sustainable allocation regime
- Calculate amount of water available considering SOS
- Identify triggers for rationing
- Security of supply (policy 30.2.3.21):
 - Seek a higher security of supply (ie a lower allocation limit) where:
 - Where demand is low
 - Knowledge about cumulative effects is not complete
 - Water augmentation scheme enables higher SOS
- Reservation of water (30.2.3.6):
 - Future community needs to 2026
 - Irrigation of Maori perpetual lease land (not applicable)

Considerations for Takaka Township regime

Possible approach:

- Step 1: Define ecologically sustainable allocation limit
- Step 2: Define if there is a lower culturally /spiritually sustainable limit
- Step 3: Assess demand and security
 - Allow for waiting lists and future reservation of water
 - Reduce AL to achieve acceptable security of supply (including existing uses, waiting lists and reservations)
- Step 4: Refine allocation limit

Considerations for Takaka Township regime

- The recommended ecologically sustainable allocation limit is the 80:10 regime (541 l/s)
- No lower cultural/spiritual limit?
- No waiting list
- Reservation of water for urban growth?
 - Potentially very small in this context (eg 5 to 50 l/s)
 - Domestic demand dependent on various factors need to define methodology to calculate
 Commercial/industrial estimates very difficult varies widely
- Security of supply difference between the two regimes is 1%
 - Is this sufficient justification to use lower AL?
- Knowledge of cumulative allocation effects for this zone:
 - Large flows (sw + gw), end of catchment, used a conservative approach to setting MF&AL – ie AL based on surface flows, but also covers groundwater takes
- No augmentation scheme (Cobb effects not considered)

Considerations for Takaka Township regime

• What are the reasons to choose 90:05 over 80:10?

Thoughts?

Water quality recap

- Suggesting we look at water quality questions together with other zones at the 13 May meeting
- Work still to be done by staff on water quality:
 - Water quality data analysis and banding (report cards)
 - Developing water quality decisions table
 - Recommendations on management methods
 - Work on defining FMU wide management options such as regulation of land use practice (eg IEMP)

Takaka Township - Water quality

- No specific issues in Takaka Gravel Aquifer
- No specific issues in Lower Takaka River
 - Site for consideration of catchment wide sediment and *E.coli* loads
- Lake Killarney and Te Kakau Stream have water quality issues
 - Primarily driven by lack of shading and lack of flushing flows
- Suggested management includes:
 - Riparian planting of Te Kakau

The state

- Review of urban stormwater runoff issues as part of Takaka Catchment Management Planning (programmed to start 2016-17)
- Good land use practice requirement to maintain or reduce nutrient inputs (FMU wide)

Water Quality Report Cards

- Report cards yet to be done
- Representative site: Lower Takaka
 - WQ mostly good, but E.coli issues with freshes
- Issues area: Te Kakau
 - This stream is likely to be a "D" for Dissolved Oxygen and macrophytes (which create the DO problem)

Questions / Discussion

ALL STREET

